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Abstract. Automated synthesis of provably correct controllers for cyber-
physical systems is crucial for deployment in safety-critical scenarios. How-
ever, hybrid features and stochastic or unknown behaviours make this
problem challenging. We propose a method for synthesising controllers
for Markov jump linear systems (MJLSs), a class of discrete-time models
for cyber-physical systems, so that they certifiably satisfy probabilistic
computation tree logic (PCTL) formulae. An MJLS consists of a finite set
of stochastic linear dynamics and discrete jumps between these dynamics
that are governed by a Markov decision process (MDP). We consider the
cases where the transition probabilities of this MDP are either known
up to an interval or completely unknown. Our approach is based on a
finite-state abstraction that captures both the discrete (mode-jumping)
and continuous (stochastic linear) behaviour of the MJLS. We formalise
this abstraction as an interval MDP (iMDP) for which we compute intervals
of transition probabilities using sampling techniques from the so-called ‘sce-
nario approach’, resulting in a probabilistically sound approximation. We
apply our method to multiple realistic benchmark problems, in particular,
a temperature control and an aerial vehicle delivery problem.

Keywords: Markov Jump Linear Systems · Stochastic Models · Uncertain
Models · Robust Control Synthesis · Temporal logic · Safety Guarantees

1 Introduction

In a world where autonomous cyber-physical systems are increasingly deployed
in safety-critical settings, it is important to develop methods for certifiable control
of these systems [32]. Cyber-physical systems are characterised by the coupling of
digital (discrete) computation with physical (continuous) dynamical components.
This results in a hybrid system, endowed with different discrete modes of operation,
each of which is characterised by its own continuous dynamics [35]. Ensuring that
these hybrid systems meet complex and rich formal specifications when controlled
is an important yet challenging goal.

⋆ This work was supported by funding from the EPSRC AIMS CDT EP/S024050/1, and
by NWO grant NWA.1160.18.238 (PrimaVera).
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Formal controller synthesis Often, these specifications cannot be expressed as
classical control-theoretic objectives, which by and large relate to stability and
convergence, or invariance and robustness [8]. Instead, these requirements can be
expressed in a temporal logic, which is a rich language for specifying the desired
behaviour of dynamical systems [44]. In particular, probabilistic computation tree
logic (PCTL, [27]) is widely used to define temporal requirements on the behaviour
of probabilistic systems. For example, in a building temperature control problem,
a PCTL formula can specify that, with at least 75% probability, the temperature
must stay within the range 22−23◦C for 10 minutes. Leveraging probabilistic
verification tools [7], it is of interest to synthesise a controller that ensures the
satisfaction of such a PCTL formula for the model under study [26].

Markov jump linear systems Markov jump linear systems (MJLSs) [20] are a
well-known class of stochastic, hybrid models suitable for capturing the behaviour
of cyber-physical systems [35]. An MJLS consists of a finite set of linear dynamics
(also called operational modes), where jumps between these modes are governed
by a Markov chain (MC) or, if jumping between the modes can be controlled,
by a Markov Decision Process (MDP). Despite each mode having linear (though
possibly stochastic) dynamics, the overall dynamics are non-linear due to the
jumping between modes. MJLSs have been used to model, among other things,
networked control systems, where the different operation modes relate to specific
packet losses or to distinct discrete configurations [29,42].

Uncertainty in MJLSs We consider a rich class of discrete-time MJLSs with two
sources of uncertainty. First, the continuous dynamics in each mode are affected
by an additive stochastic process noise, e.g., due to inaccurate modelling or wind
gusts affecting a drone [10]. We only assume sampling-access to the noise, rather
than full knowledge of its probability distribution, allowing us to provide probably
approximately correct (PAC) guarantees on the behaviour of the MJLS. Second,
similar to [42], we assume that the transition probabilities of the Markov jump
process are not precisely known. However, unlike [42], we consider two different
semantics for this uncertainty: either (1) transition probabilities between modes
are given by intervals; or (2) these probabilities are not known at all [31,36]. More
details on the considered model are in Sect. 2.

Problem statement Several MJLS control problems have been studied, such as
stability [12,55], H∞-controller design [19,21,22,54], and optimal control [30,53].
However, limited research has been done for more complex tasks expressed in,
for example, PCTL. In this paper, we thus solve the following problem. Given an
MJLS subject to uncertainty in both its continuous dynamics (via additive noise
of an unknown distribution) and its discrete behaviour (uncertain Markov jumps),
compute a provably correct controller that satisfies a given PCTL formula.

Abstractions of MJLSs We develop a new technique for abstracting MJLSs by
extending methods introduced for linear non-hybrid systems in [4]. In line with [4],
we capture the stochastic noise affecting the continuous dynamics by means of



Formal Controller Synthesis for MJLSs with Uncertain Dynamics 3

transition probability intervals between the discrete states of the abstraction. We
compute these intervals using sampling techniques from the scenario approach [16]
and leverage the tighter theoretical bounds developed in [48]. We thus formalise
the resulting abstract model as an interval MDP (iMDP), which is an MDP with
transition probabilities given as intervals [24]. Different from [4], we also newly
capture the discrete mode jumps in the abstract iMDP.

Controller synthesis We use the state-of-the-art verification tool PRISM [33] to
synthesise a policy on the abstract iMDP that satisfies a given PCTL specification.
Leveraging results from the scenario approach, we refine this policy into a controller
for the MJLS with PAC guarantees on the satisfaction of the specification.

Contributions Our main contribution is a framework to synthesise provably-correct
controllers for discrete-time MJLSs given general PCTL specifications, based on
iMDP abstractions of the MJLSs. Previous work in this area has been limited to
linear time-invariant dynamics, and to simpler reach-avoid specifications [4]. We
thus extend earlier techniques by developing new methods for a broader class of
hybrid models (MJLSs) and for general PCTL formulae. In line with previous work,
we propose a semi-algorithm based on iterative refinements of our model, meaning
that a synthesised controller will satisfy the required formula, but the inability
to find such a controller does not imply the non-existence of one. Technically, we
newly show how to capture both the continuous and discrete dynamics of the MJLS
in the abstract iMDP model. In particular, our methods are applicable to MJLSs
where the stochastic noise in the continuous dynamics and that in the transition
probabilities of the Markov jump process are unknown.

Related Work

Techniques for providing safety guarantees for dynamical systems can largely be split
into two approaches, respectively called abstraction-free and abstraction-based [35].

Abstraction-free methods derive safety guarantees without the need to create
simpler abstract models. For example, barrier functions [37,43,47] can be used
to certify the existence of control inputs that keep the system within safe states.
Another approach is that of (probabilistic) reachability computation [3,41], where
the goal is to evaluate if the system will reach a certain state over a given horizon.

Abstraction-based methods [8,50] analyse a simpler model of the system, for-
mally shown to be related to the concrete model, and thus allow to transfer the ob-
tained results (safety guarantees, or synthesised policies) back to the original model.
Various approaches exist for creating abstractions of different forms, including
the celebrated counterexample-guided abstraction/refinement approach [18] and,
relevant for this work, a few involve abstractions as Markov models [1,3,5,6,17,49].

Related to the approaches detailed above is robust control, where the goal
is to compute a controller that achieves some task while being robust against
disturbances. Robust control techniques for MJLSs have been studied in [9,13,51].
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2 Foundations and Problem Statement

2.1 Markov Decision Processes

A Markov decision process (MDP) is a tupleM=(S,A,sI ,P ) where S is a finite set
of states,A is a finite set of actions, sI ∈S is the initial state, andP : S×A⇀Dist(S)
is a (partial) probabilistic transition function, with Dist(S) the set of all probability
distributions over S [7]. We call a tuple (s,a,s′) with probability P (s,a)(s′)> 0
a transition. We write A(s) ⊆ A for the actions enabled in state s. A Markov
chain (MC) is an MDP such that |A(s)|=1,∀s∈S. We consider time-dependent
deterministic (or pure) policies, π : S×N→A, which map states s∈S and time
steps k∈N, to actions a∈A(s). The set of all policies for MDPM is denoted byΠM.

Interval Markov decision processes (iMDPs) extend regular MDPs with un-
certain transition probabilities [24]. An iMDP is a tupleMI=(S,A,sI ,P), where
the states and actions are defined as for MDPs, and P : S×A⇀ 2Dist(S) maps
states and actions to a set of distributions over successor states. Specifically, each
P(s,a)(s′) is an interval of the form [p,p], with p,p∈ (0,1],p≤ p. Intuitively, an
iMDP encompasses a set of MDPs differing only in their transition probabilities:
fixing an allowable probability distribution in the set P(s,a) for every state-action
pair (s,a) (denoted P ∈P for brevity) results in an MDP, denoted byMP

I .

2.2 Markov Jump Linear Systems

Let Z = {z1,...,zN} be a finite set of discrete modes. Consider the collections of
matrices A= (A1,...,AN ), Ai ∈Rn×n, and B = (B1,...,BN ), Bi ∈Rn×m; and of
vectors q=(q1,...,qN ),qi∈Rn. A discrete-time MJLS model J comprises continuous
and discrete dynamics. Each triple (Ai,Bi,qi) defines a linear dynamical system,
with discrete-time dynamics in (1a). The discrete jumps between theN modes in Z
are governed by an MDP (Z,B,zI ,T )with switching actions B={1,...,M}, andmode
switch transition function T : Z×B⇀Dist(Z). At any time k∈N, we denote the
continuous state by x(k)∈X ⊆Rn (X bounded), and the discrete mode by z(k)∈Z.
Given initial state x(0)∈X ,z(0)∈Z, the (hybrid) state (x,z) is computed as

J :

{
x(k+1)=Az(k)x(k)+Bz(k)u(k)+qz(k)+wz(k)(k)

z(k+1)∼T (z(k),b(k)),
(1a)
(1b)

where u(k)∈U⊆Rm is the control input to the continuous dynamics, and b(k)∈B is
the discrete (MDP) switching action. Note, for each mode z∈Z, the corresponding
continuous dynamics are affected by an additive stochastic process noise wz, with a
(potentially) unknown distribution. The distribution of the noise wz is not required
to be the same across different modes, but {wz(k)}k∈N must be an i.i.d. stochastic
process having density with respect to the Lebesgue measure, and independent
across modes. Importantly for our setting, the input u and switch b are jointly deter-
mined by a feedback controller (namely, a policy for the MJLS) of the following form.

Definition 1. A time-dependent feedback controller F : X ×Z×N→U×B is a
function that maps a continuous state x∈X , discrete mode z∈Z, and time step
k∈N, to a continuous control input u∈U and discrete switch b∈B.
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Example 1. Consider a temperature regulation problem inspired by [3], in which
a portable fan heater and a portable radiator are used to heat a two-room building.
We define two modes Z = {1,2}, relating to the fan heater being in room 1 or
2 respectively (and the radiator in the other room). Swapping the heat sources
between rooms is modelled by an MDP with actions B={0,1}, relating to leaving
or switching the heaters. Each of these mode-switching actions fails with some
probability. This problem is naturally modelled as an MJLS with the matrices

A{1,2}=

[
1−b1−a12 a12

a21 1−b2−a21

]
,

B1=

[
kf 0
0 kr

]
, B2=

[
kr 0
0 kf

]
, q{1,2}=

[
b1xa
b2xa

]
,

(2)

where the state x=[T1,T2]
⊤∈R2 models the room temperatures, and the power of

both heaters can be adjusted within the range u∈ [0,1]2 (the extrema denoting being
fully on and off). In Sect. 6, we perform a numerical experiment with this MJLS. ⊓⊔

2.3 Probabilistic Computation Tree Logic

Probabilistic computation tree logic (PCTL) depends on the following syntax [7]:

Φ ::= true | p | ¬Φ | Φ∧Φ | P∼λ(ψ)

ψ ::=ΦUΦ | ΦU≤KΦ | XΦ.
(3)

Here,∼∈{<,≤,≥,>} is a comparison operator and λ∈ [0,1] a probability threshold;
PCTL formulae Φ are state formulae, which can in particular depend on path formu-
lae ψ. Informally, the syntax consists of state labels p∈AP in a set of atomic propo-
sitionsAP , propositional operators negation¬ and conjunction∧, and temporal op-
erators until U, bounded until U≤K , and next X. The probabilistic operator P∼λ(ψ)
requires that paths generated from the initial conditions satisfy a path formula ψ
with total probability exceeding (or below, depending on∼) some given threshold λ.

An MJLS J with a controller F induces a stochastic process on the hybrid state
space X×Z. Let LJ : X×Z→2AP be a labelling from hybrid states to a subset
of labels. Recall that the noise affecting the continuous dynamics in (1) has density
with respect to the Lebesgue measure. We assume for each label that the set {x∈
X : p∈LJ (x,z),z∈Z}⊆X of continuous states with label p is measurable. We follow
the same semantics as used in [34] for stochastic hybrid systems, i.e., the (initial)
state x(0),z(0) of an MJLS J satisfies a property Φ=P∼λ(ψ) if the probability of
all paths from x(0),z(0) satisfies ∼λ. For brevity, we shall write this satisfaction
relation as J |=F Φ. All the sets of paths (x(0),z(0)),(x(1),z(1)),... expressed by
PCTL under the above assumptions are measurable, see, e.g., [35,46,52] for details.

For an iMDPMI, the satisfaction relationMI |=πΦ defines whether a PCTL
formula Φ holds true, when following policy π from the initial state(s). Formal
definitions for semantics and model checking are provided in [7,27]. Recall from (4)
that for iMDPsMI, the threshold∼λmust hold under the worst-case realization of
the probabilities P ∈P in their intervals. That is, we are interested in synthesizing
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an optimal policy π⋆∈ΠMI that maximises the probability of satisfying a path spec-
ification ψ for the worst-case assignment P ∈P (which is determined by a so-called
adversary). In other words, we seek to solve the max-min decision problem given by

π⋆=argmax
π∈ΠMI

min
P∈P

λ s.t. P≥λ(MP
I |=πψ). (4)

It is shown by [38,45], and in a much more general setting by [25], that deterministic
policies suffice to obtain optimal values for iMDPs.

2.4 Problem Statement

We consider tasks encoded as a PCTL formula Φ. Our goal is to find a feedback
controller F that satisfies Φ. As such, we solve the following problem.

Problem 1. Given an MJLS J as in (1) and a PCTL formula Φ, find a control policy
F : X×Z×N→U×B, such that J |=F Φ.

In this paper, we address Problem 1 through the lens of abstractions [50], under
two distinct assumptions on the mode-transition function of the MJLS.

Assumption A (Uncertain Markov jumps) Each transition probability of
the MDP (Z,B, zI , T ) driving the jumps across modes in Z is known up to a
certain interval T ∋T , i.e., the Markov jump process is an iMDP (Z,B,zI ,T ).

Assumption B (Unknown Markov jumps) The Markov jumps are driven by
a Markov chain (MC) for which we can measure the current mode, but the transition
function (and hence its underlying graph structure) is unknown.

For Assumption A, we will exploit the transition function of the jump process to
reason over the joint probability distribution over the state x(k) and mode z(k).
By contrast, under Assumption B, we do not know the distribution over successor
modes z(k+1), so reasoning over the joint distribution is not possible. Instead, our
goal is to attain robustness against any mode changes that may occur. An overview
of our abstraction-based approach to solve Problem 1 is presented in Fig. 1. We
note that it may occur that the PCTL formula is not satisfiable on the abstract
model. To alleviate this issue, we propose an iterative refinement of the abstraction
(shown by the dashed line in Fig. 1), which we explain in more detail in Sect. 5.

3 Abstractions of Non-Hybrid Dynamical Systems

Our abstraction procedure expands on the techniques from [4,6] to make them
applicable to hybrid (and probabilistic) models. We start by summarising the main
contributions of these papers, while referring to [4,6] for proofs and more details.

Consider a discrete-time linear system L with additive stochastic noise:

L : x(k+1)=Ax(k)+Bu(k)+q+w(k), (5)
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Partition X
Confidence param. β

Individual mode
iMDPs (Sect. 3)

{Mz
I = (S,Az,sI ,Pz)}z∈Z

Combined iMDP
M×

I (Sect. 4.2) or
M∀z

I (Sect. 4.3)

Markov jump
linear system (1)

iMDP policy (Sect. 5)
Optimal policy π⋆

Hybrid controller (Sect. 5.2)
F : X × Z × N → U × B

PCTL formula Φ
Compute robust
optimal policy

Sample and
abstract

Combine individual iMDPs
and mode switching iMDP

PCTL formula
satisfied:
Extract π⋆

PCTL formula not
satisfied:
Increase sample size
V ←γV

Fig. 1. Approach for synthesising a provably-correct controller for an MJLS.

whereA∈Rn×n,B∈Rn×m,q∈Rn, andw(k) defines an i.i.d. stochastic process, and
x(k)∈X ⊆Rn and u(k)∈U ⊆Rm are the states and control inputs, respectively.
The distribution of the noise w(k) is assumed to be unknown, but instead we have
access to a set {δ1,...,δV } of V i.i.d. samples of w(k). Note that the system in (5)
reduces to an MJLS with a single mode. Given such a set of i.i.d. samples, the
authors in [6] show how to construct an iMDP which, with a specified confidence
level, abstracts the system in (5):

Definition 2 (β-iMDP abstraction). Choose β∈ (0,1) and let {δ1,...,δV } be
a collection of samples from the noise distribution affecting the dynamics in (5).
An iMDPMI=(S,A,sI ,P) is a β-iMDP abstraction if for every PCTL formula Φ
and for every policy π∈ΠMI , there exists a feedback control F : X ×N→U such
that, for any initial condition x(0), we have that

PV
{
(MI |=πΦ) =⇒ (L |=F Φ)

}
≥1−β, (6)

where sI is the initial state of the β-iMDP associated with continuous state x(0),
and PV is the product probability measure induced by the sample set {δ1,...,δV }.

We remark that PV is the product probability measure corresponding with sampling
a set {δ1,...,δV } of V ∈N samples of the noise w(k) in (5) (see, e.g., [14] for details).
Def. 2 states that, with a confidence of at least 1−β, the satisfaction of a formula on
the abstract iMDP implies the existence of a feedback controller that allows the sat-
isfaction of the same formula on the concrete model. The confidence bound accounts
for the inherent statistical error caused by constructing the iMDP based on a finite
set of noise samples only. The iMDP abstraction allows us to synthesise correct-by-
design feedback controllers for continuous-state dynamical systems [40], by utilising
policies designed for a discrete-state model. Note that Def. 2 applies to general
PCTL formulas, while [6] only considers reach-avoid properties (a subset of PCTL).

Definition 3 (Partition). A partition X = {X1, ... ,Xp} is an ordered set of
subsets of X such that X =

⋃p
i=1Xi, and Xi

⋂
Xj=∅,∀i,j∈{1,...,p},i ̸=j.
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Papers [4,6] show how to generate β-iMDP abstractions by combining partitioning
of the state space, backward reachability computation, and the scenario approach
theory [14]. To this end, these papers create an iMDP abstraction (S,A,sI ,P) of
the continuous-state dynamics using the following procedure:

– The set of states S={s1,...,sp}∪{s⋆} consists of elements associated with a
partition X of the state space. This correspondence is given by the quotient
mapping induced by the equivalence relation of the partition (see, e.g., [50]).

– The action space A={a1,...,aq}, where each action a∈A is associated with
a target point d∈X in the continuous state space (a convenient choice is to
define each target d as the centre of an element Xi∈X of the partition).

– To decide which actions are enabled at a given state of the abstraction, backward
reachable set computations are employed. More specifically, we let

R−1(a)={x∈Rn |d=Ax+Bu+q,u∈U} (7)

be the backward reachable set of the target point d associated with the action
a∈A. Action a is enabled in state s∈S if and only if its corresponding element
Xi∈X is contained in R−1(a). Mathematically, we have that

A(s)=
{
a∈A|Xi⊆R−1(a)

}
. (8)

– The initial state sI of the iMDP is defined by the element of the partition to
which the initial state of the continuous dynamics belongs.

– The probability intervals P(s,aj)(si) of the abstract iMDP can be efficiently
computed using the scenario approach [15,48], or using statistical inequalities
such as Hoeffding’s bound [11].

To show that this procedure indeed yields a β-iMDP abstraction as per Def. 2, we
also invoke the following key result from [6]:

Theorem 1 (iMDP abstraction of stochastic linear systems [6]). Let X
be a partition of the state space, then for any β∈(0,1) and sample set {δ1,...,δV },
the procedure above yields a β-iMDP abstraction for the dynamics in (5).

We provide an intuitive proof outline here, while referring to [6] for the full proof.
Consider state s, with an associated continuous state x(k); successor state s′, with
associated partition Xi; action a, with an associated feedback controller F . The
true probability of transitioning from s to s′, under action a is defined as

P⋆(s,a)(s′)=

∫
Rn

1Xi
(Ax(k)+BF (x(k),k)+q+ξ)Pw(dξ), (9)

where Pw is the (in practice unknown) probability measure induced by the noise
distribution, 1Xi

(·) is the indicator function (which returns value 1 if its argument
belongs to the set Xi). Since transition probability intervals are obtained from the
scenario approach theory, they contain probability P⋆ with confidence β:

PV
{
P⋆(s,a)(s′)∈P(s,a)(s′),∀s∈S

}
≥1− β

|A|·|S|
. (10)
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The generated iMDP has at most |A| · |S| unique probability intervals, because
P⋆(s,a)(s′) = P⋆(s′′,a)(s′) for any s,s′′ ∈ S in which a is enabled. Thus, using
Boole’s inequality, we have that for all probabilities P⋆(s,a)(s′)

PV
{
P⋆(s,a)(s′)∈P(s,a)(s′),∀s,s′∈S,a∈A

}
≥1−β. (11)

LetMP⋆

denote the MDP under the true transition function P⋆, and let π∈ΠMP⋆

be any policy for this MDP such that a given PCTL property Φ is satisfied
on the iMDP, i.e. MP⋆ |=π Φ. Using concepts from probabilistic simulation re-
lations [17,28,35], it can be shown that there exists a controller F such that
(MP⋆ |=πΦ) =⇒ (L |=F Φ). Combining this with (11), which states that PV {MP⋆ ∈
MI}≥1−β, we arrive at the condition for a β-iMDP abstraction in Def. 2.

Theorem 1 can be used to synthesise provably correct controllers for temporal
logic specifications, but is limited to systems without discrete dynamics, as for
MJLSs. In what follows, we will develop a framework to overcome this limitation.

4 Abstractions of Markov Jump Linear Systems

In this section, we present our main contributions to solving Problem 1. We first
explain how we use the results from Sect. 3 to construct an abstraction for the
continuous dynamics of an individual mode. Then, we discuss how to “combine”
abstractions across discrete modes to obtain a single iMDP abstraction. Finally, we
compute an optimal policy π⋆ on the obtained iMDP and show (using Theorems 2
and 3) that this policy can be refined as a controller for the hybrid dynamics.

4.1 iMDP Abstraction for Individual Modes

We construct an abstraction for each separate mode z∈Z of the MJLS defined
by (1) using the procedure that led to Theorem 1. For simplicity, we consider
rectangular partitions, but our methods are applicable for any partition into convex
sets satisfying Def. 3, and even to distinct partitions across modes. We then obtain
a β-iMDP abstractionMz

I =(S,Az,sI ,Pz) for each mode z∈Z.
In order to reason over the hybrid system as a whole, we now need a sound

method to “combine” the abstractionsMz
I for each mode z∈Z into a single abstract

model. However, without careful consideration of the enabled discrete actions, the
resulting model may fail to soundly abstract the overall MJLS, as different actions
may be enabled in the same region of continuous states, and this would lead to
spurious trajectories in the abstraction.

To exemplify this issue, consider a specific instance of Example 1, in which
the room without the radiator is perfectly insulated from the other. If we naively
“combine” single-mode abstractions together, then we might conclude that we will
be able to heat either room to any temperature, since the two modes taken individ-
ually can heat either room. This is an example of artificial behaviour introduced
in the abstraction. In reality, we can only control one room at the same time; any
actions which say otherwise will not be realisable on the concrete dynamical model.
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As our main contribution, we introduce in Sect. 4.2 an approach for combining
single-mode iMDPs under Assumption A in a sound manner, and in Sect. 4.3 we
discuss the case for Assumption B.

4.2 Abstraction Under Uncertain Markov jumps (Assumption A)

Under Assumption A, we have access to an iMDP representationMI=(Z,B,zI ,T )
of the discrete-mode Markov jump process, which has modes in Z, switching
actions in B, initial mode zI , and transition probability intervals in T . Let
{Mz

I =(S,Az,sI ,Pz)}z∈Z be a set of β-iMDPs for each mode z∈Z, constructed
as described in Sect. 4.1 with a confidence level of β∈(0,1). We assume that these
β-iMDPs have a common state space S, and an overall action space A. We also
allow for a mode-dependent set of enabled actions; and use the notation Az(s) to
define actions enabled at a state s, in mode z.

To combine these modes, we use a product construction, similar to methods for
constructing product automata [23]. We define our product construction among
MI and {Mz

I }z∈Z . The joint state/action space of the product are the sets Z×S
and B×A. At a particular joint state (z,s), we define the set of enabled actions
A(z,s)=B(z)×Az(s) as the product between the actions enabled at a particular
mode, and the switches allowed in the corresponding state of the discrete iMDP.
Thus, an action in the product iMDP corresponds with executing both an action
in Az (for the current mode z) and a discrete mode switching action in B. The
overall product iMDP under Assumption A is defined as follows:

Definition 4 (Product iMDP with mode switch control). Let {Mz
I =

(S,Az,sI ,Pz)}z∈Z be a set of β-iMDP abstractions for each mode z ∈Z, and let
MI = (Z,B,zI ,T ) be an iMDP for the Markov jump process. Then, the product
iMDPM×

I =(S×,A×,s
I
×,P×) is defined with

– Joint state space S×=Z×S;
– Joint action space A×=B×A, with enabled actions A(z,s) in state (z,s);
– Initial joint state sI×=(zI ,sI);
– For each (z,s),(z′,s′)∈Z×S and (b,a)∈A(z,s), the probability interval

P×
(
(z,s),(b,a)

)(
(z′,s′)

)
=

[t(z,b)(z′)·pz(s,a)(s′), t(z,b)(z′)·pz(s,a)(s′)].
(12)

Here pz(s,a)(s′) and pz(s,a)(s′) are, respectively, the lower and upper bound state
transition probability of β-iMDPMz

I for mode z∈Z, and [t(z,b)(z′),t(z,b)(z′)] are
the intervals in the transition function T of the jump process iMDP.

By construction, the product iMDP merges the individual mode abstractions
and the mode-switching iMDP in a sound manner, thus avoiding the issues with
spurious actions described in Sect. 4.1. The product iMDP depends onNV samples
(N sets of V samples, one for each mode), hence the abstraction is a random vari-
able on the space NV . The PNV appearing in these theorems denotes the product
measure PV

z1⊗P
V
z2 ···P

V
zN (note that the noise distribution can differ between modes).

We extend Theorem 1 to the product iMDP as follows.
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Theorem 2 (iMDP abstraction of controlled MJLS). The product iMDP
defined by Def. 4 is a β′-iMDP abstraction with confidence β′=β ·|Z| for the MJLS
in (1), which captures the mode switching iMDPMI. In particular,

PNV
{
(M×

I |=πΦ) =⇒ (J |=F Φ)
}
≥1−β′. (13)

We provide an outline of the proof here, whilst for a detailed proof we refer
to Appendix 1. The key observation is that the product iMDP is defined as the
product between |Z| β-iMDPs (having intervals that are “correct” with probability
at least 1− β

|A|·|S| , cf. (10)) and the mode switching iMDP (which is “correct”
with probability one). These |Z| individual-mode iMDPs have |A|·|S|·|Z| unique
intervals in total. Thus, the probability for all intervals to be correct (and thus
for the product iMDP to be sound) is at least 1− β·|A|·|S|·|Z|

|A|·|S| = 1−β′. Finally,
analogously to Theorem 1, the iMDP is a probabilistic simulation relation [28],
such that the satisfaction of general PCTL formulae in the discrete abstraction
guarantees the satisfaction of the same formulae in the concrete MJLS system.

4.3 Abstraction Under Unknown Markov jumps (Assumption B)

Under Assumption B, the mode transition probabilities are now completely un-
known. Thus, in contrast with Sect. 4.2, we generate an abstraction that is robust
to any mode we may be in.

Robustifying enabled actions First, we modify the computation of the backward
reachable set in (7) to introduce a backward reachable set across all possible modes
(i.e., the set that can reach d regardless of which mode we are in – note the universal
quantification ∀z∈Z in the following equation):

G−1(d)={x∈Rn |d=Azx+Bzu+qz,u∈U ,∀z∈Z}

=
⋂
z∈Z
{x∈Rn |d=Azx+Bzu+qz,u∈U}=

⋂
z∈Z
R−1

z (d), (14)

where R−1
z (d) is the backward reachable set for mode z∈Z, as defined in (7).

Similar to Sect. 3, we use backward reachable set computation to define the set
of enabled actions, now denoted by A∀z, in the iMDP. Indeed, for a given partition
of the state spaceX={X1,...,Xp}, an action a is enabled at a state s if the backward
reachable set G−1(d) defined in (14) contains the corresponding element Xi of the
partitionX, i.e., a is enabled ifXi⊆G−1(d). Thus, by definition, the action a is real-
isable on the concrete dynamical model, regardless of the current mode of operation.

Robustifying probability intervals We render the transition probability intervals
robust against any mode in two steps. First, we compute the transition probability
intervals Pz for the iMDPMz

I for each individual mode z∈Z. For each transition
(s,a,s′), the robust interval P∀z(s,a)(s

′) is then obtained as the smallest probability
interval that contains the intervals in Pz for all modes z∈Z:

P∀z(s,a)(s
′)=

[
min
z∈Z

pz(s,a)(s
′), max

z∈Z
pz(s,a)(s

′)
]
, (15)
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where pz(s,a)(s′) and pz(s,a)(s′) are again the lower/upper bound probabilities
of iMDPMz

I . Using (15) we obtain probability intervals that are, by construction,
a sound overapproximation of the probability intervals under any mode z∈Z. We
use this key observation to state the correctness of the resulting iMDP.

Theorem 3 (Robust iMDP with unknown mode jumps). The robust iMDP
M∀z

I =(S,A∀z,sI ,P∀z) with actions defined through (14) and intervals defined by
(15) is a β′-iMDP abstraction for the MJLS in (1), which models state transitions
robustly against any mode transition. In particular,

PNV
{
(M∀z

I |=πΦ) =⇒ (J |=F Φ)
}
≥1−β′. (16)

We again provide the full proof in Appendix 1, while only providing an outline
here. The robust iMDP is composed of intervals that contain the true transition
probabilities, with a probability of at least 1− β

|A|·|S| . Thus, every probability
interval of the robust iMDP contains the intervals for all modes z ∈ Z with
probability at least 1− β

|A|·|S| · |Z|. Since the robust iMDP has |S| · |A| unique
intervals, it follows that all intervals of the iMDP are correct with probability
at least 1− β·|A|·|S|·|Z|

|A|·|S| =1−β′. Analogous to the proof of Theorem 2, it is then
straightforward to prove that this abstraction is also a β′-iMDP.

5 Synthesis for General PCTL Formulae

To synthesise optimal policies in our discrete abstraction, we use the probabilistic
model checker PRISM [33]. We handle complex and nested PCTL formulae by
defining a parse tree [7], whose leaves are atomic propositions, and whose branches
are logical, temporal, or probabilistic operators. The complete formula can be
verified using a bottom-up approach. As an example, consider the formula

Φ=P≥0.6[XP≤0.5(¬TCU≤K−1(TL∨TC))]∧P≥0.9[¬TCU≤KTG], (17)

with atomic propositions TC ,TL,TG. The parse tree for this formula is shown in
Fig. 2. We will explain and use this formula in the temperature control experiment
in Sect. 6. When considering multiple PCTL fragments, we find a policy associ-
ated with each fragment (our example above will find two policies, one satisfying
P≥0.6[XP≤0.5(¬TCU≤K−1(TL∨TC))] the other P≥0.9[¬TCU≤KTG]). At runtime,
we choose which PCTL fragment to satisfy and apply its associated policy as π⋆.

5.1 Unsatisfied Formulae

If the PCTL formula is not satisfied by the iMDP, we refine our abstraction by in-
creasing the number of samples used to compute the probability intervals (shown by
the dashed line in Fig. 1). As also discussed in more detail and shown experimentally
by [4], this refinement tightens the probability intervals, which in turn improves the
probability of satisfying the property. We iteratively refine our abstraction until the
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Φ

∧

P≥0.6 P≥0.9

X

P≤0.5

U≤K−1

¬ ∨

TC TL TC

U≤K

¬

TC

TG

Fig. 2. Parse tree for PCTL formula (17).
Fig. 3. Simulated paths under weak (blue)
and strong (orange) wind for the drone.

formula is satisfied or until amaximumnumber of iterations is exceeded (whichwe fix
a priori), in which case nothing is returned. In this way, our method is sound, but not
complete: if the formula is not satisfied after the maximum number of iterations, this
in general does not imply that the formula cannot be satisfied at all. However, for any
policy that is returned by our algorithm, the correctness result of Theorem 3 holds.

5.2 Controller Synthesis via Policy Refinement

We refine the optimal policy π⋆ to obtain a hybrid-state feedback controller F
for the MJLS, as follows. Given the current continuous state x∈X , mode z∈Z
and time step k∈N, we first find the element Xi of partition X containing state
x, such that x ∈ Xi. Depending on whether we consider abiding by modelling
Assumption A or Assumption B, we then proceed as follows:

– For Assumption A, we find the product state s×=(z,s) associated with the
current mode z∈Z and state s. We then look up the optimal product action
a×=π⋆(s×,k)=(b,a) from policy π⋆, with corresponding switching action b
and continuous action a.

– For Assumption B, it suffices to know state s associated with Xi only, and we
directly obtain action a=π⋆(s,k), with no switching action.

Finally, we compute the continuous control input u associated with action a by
calculating the control input that drives us to the associated target point d, using
u=B+

z (d−Azx−qz), with B+
z representing the pseudoinverse of Bz.

6 Numerical Experiments

We have implemented our techniques in Python, using the probabilistic model
checker PRISM [33] to verify the satisfaction of PCTL formulae on iMDPs. The
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codebase is available at https://github.com/lukearcus/ScenarioAbstraction. Ex-
periments were run on a computer with 6 3.7 GHz cores and 32 GB of RAM. We
demonstrate our techniques on two models: (1) a UAV motion control problem with
two possible levels of noise, and (2) a building temperature regulation problem,
in line with our running example from Sect. 2. Details on the UAV model and
additional experimental results can be found in Appendix 2.

6.1 UAV Motion Planning

We consider a more refined, hybrid version of the unmanned aerial vehicle (UAV)
motion planning problem from [4]. We consider two discrete modes, which reflect
different levels of noise, namely low and high wind speeds. We use our framework
considering Assumption A. The PCTL specification Φ=P≥0.5[¬OU≤KG] requires
reaching a goal set G (highlighted in green in Fig. 3), whilst avoiding obstacles O
(highlighted in red). We choose a finite time horizon K=64. While our theoretical
contributions hold for any probability distribution for the additive noise, in this
particular experiment we sample from a Gaussian.

Scalability The number of iMDP states equals the number of partitions, multiplied
by the number of discrete modes, here resulting in 51,030 states. The number of tran-
sitions depends on the number of samples: with 100 samples, we generate an iMDP
with 92.7 million transitions; with 200 samples, 154 million transitions. Computing
the iMDP actions enabled in the abstraction is independent of sampling and takes
8.5min; computing the transition probability intervals of the iMDP takes 70min; for-
mal synthesis of the optimal policy takes 40 s, and control refinement occurs online.

Variable noise affects decisions With our techniques, we synthesise a controller
that accounts for different noise levels at runtime and reasons about the probability
of the noise level changing. Thus, our framework makes use of the information
available regarding the jump process, while at the same time reasoning explicitly
over the stochastic noise affecting the continuous dynamics in each mode.

6.2 Temperature Regulation in a Building

We consider again the 2-room building temperature control problem [3] intro-
duced in Example 1. Recall that the state x = [T1,T2]

⊤ ∈ R2 models the tem-
perature in both rooms, and the control input (modelling the power supply to
the heaters) is constrained to u ∈ R2. The values of the constants in (2) are
a12 =0.022, b1 = b2 =0.0167, kf =0.8, kr =0.4, xa =6. The noise is distributed
according to a zero-mean Gaussian with a standard deviation of 0.2.

We wish to optimise the probability of satisfying the path formula ψ =
(¬TC)U≤K(TG), with goal temperature TG between 22 and 23◦C, and critical
temperature TC less than 20◦C or greater than 25◦C. We partition the state space
into 1600 regions, using a time horizon K = 32. We look into two setups, one
fulfilling Assumption A (Fig. 4) and the other Assumption B (Fig. 5). We show
the results for all initial continuous states, and in Fig. 4 we consider starting in
mode 1 (whereas the bounds in Fig. 5 hold for any initial mode).

https://github.com/lukearcus/ScenarioAbstraction
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Fig. 6. States that sat-
isfy (in white) the gen-
eral PCTL formula in
(17) (Assumption A).

Assumptions affect conservativism and scalability When we wish to be robust to all
possiblemodes (cf. AssumptionB), our generated iMDP ismuch smaller (with about
18 times fewer transitions), since we have a single robust iMDP, compared to a prod-
uct iMDP. However, as expected and seen in Fig. 5, the obtained probability lower
bounds are much more conservative. Thus, compared to Assumption B, Assump-
tion A reduces the level of conservatism (because we exploit the probability intervals
of the Markov jump process) at the cost of increasing the size of the abstraction.

6.3 Controller Synthesis for General PCTL Formulae

We now consider the general PCTL formula in (17) to show the applicability
of our techniques beyond reach-avoid specifications. This formula requires (1)
heating both rooms to a goal temperature while avoiding critical temperatures;
and (2) reaching a state at the next time step, which is able to avoid entering an
unwanted or critical temperature. The new atomic proposition TL specifies that
temperatures should be kept below 21◦C in room 1. In Fig. 6, we show the set of
iMDP states that satisfy the PCTL formula (shown in white), if the fan heater is
initially in room 1 (see Example 1). Thus, we can compute a feedback controller
for the MJLS satisfying the PCTL formula, unless the initial room temperature
is (approximately) below 21◦C, or if both initial temperatures are too high.

7 Conclusions and Future Work

We have presented a new method for synthesizing certifiably correct controllers for
MJLSs with hybrid, stochastic and partly unknown dynamics. We considered both
the case where an estimate of the switching probabilities across discrete operation
modes is known, and the alternative instance where these probabilities are not
known at all. Our experiments have demonstrated the efficacy of our methods on
a number of realistic problems.

Future research directions include considering state-dependent mode switches
(e.g. for models in [2,39]), estimating mode-switching probabilities with the scenario
approach, and dealing with a setting where matrices are only known to belong to
a convex polytope, as in [5] for non-hybrid systems.
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Appendix 1 Proofs

Appendix 1.1 Proof of Theorem 2

Since the dynamics for each mode z∈Z is a linear system and mode jumps happen
after state transitions, then the one-step backward reachable set is simply the
one-step backward reachable of the linear dynamics in the mode. As such, to define
the sets of enabled actions, we can simply use the individual iMDP abstractions for
linear dynamics. By constructing a Cartesian product state and action space, we
encompass our state and action in both the current mode iMDP and in the mode
switching iMDP.

From the definition of the mode switching iMDP and the construction of the
individual mode β-iMDPs from Sect. 3, we have

T ⋆(z,b)(z′)∈T (z,b)(z′)=[t(z,b)(z′),t(z,b)(z′)],

PV
z

{
P⋆
z(s,a)(s

′)∈Pz(s,a)(s
′), ∀s∈S

}
≥1− β

|S|·|A|
,

(18)

with T (z,b)(z′) the probability interval for transition (z,b,z′) in the mode switching
iMDPMI, and with Pz(s,a)(s

′)=[pz(s,a)(s
′),pz(s,a)(s

′)] the probability interval
for transition (s,a,s′) in individual-mode iMDPMz

I . Moreover, recall from Sect. 3
that T ⋆ is the true transition function of the mode switching MDP, and that P⋆

z

is the true transition function of the MDP abstraction for mode z∈Z.
Based on the definition of the transition function P× of the product iMDP in

(12), it immediately follows that for each (z,s),(z′,s′)∈Z×S and (b,a)∈A(z,s),
it holds that

PNV {P⋆
×((z,s)(b,a))((z

′,s′))∈P×((z,s)(b,a))((z
′,s′))}≥1− β

|S|·|A|
, (19)

where P⋆
× is the true (unknown) transition function of the product MDP. Since

the iMDP can be shown to have at most |S|·|A|·|Z| unique transition probability
intervals, we can make use of Boole’s inequality to show that with probability at
least 1−β′, all probabilities are contained within their intervals:

PNV
{
P⋆
×((z,s)(b,a))((z

′,s′))∈P×((z,s)(b,a))((z
′,s′)),

∀(z,s),(z′,s′)∈Z×S,∀(b,a)∈A(z,s)
}
≥1− β ·|S|·|A|·|Z|

|S|·|A|
=1−β′,

(20)

which we write as PNV {MP⋆
× ∈M×

I }≥1−β′ for brevity.
In order to connect this result on the abstract system back to the dynamical

system, we consider again the mapping from hybrid states to abstract states, and
the MDPMP⋆

×
× with transition probabilities P⋆

×((z,s)(b,a))((z
′,s′)) which are the

true transition probabilities. We now demonstrate that this mapping from hybrid
states to abstract states induces a probabilistic feedback refinement [28]. A sufficient
condition for this relation is that, for any pair of related states ((z(k),x(k)),s×),
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and for all actions a×∈A×(s×) enabled in that joint state s×, there exist inputs
b∈B,u∈U such that the probability of transitioning to any state s′× in the MDP
is equal to the probability of transitioning to any x′∈Xi and to z′ (where Xi is
the element of the partition associated with s′×). First, by definition, it is evident
that the initial states match so that (z(0),x(0)) maps to sI×. Then, for any pair
of states ((z(k),x(k)),s×), we have that

∀a×∈A×,s
′
×∈S× :

P⋆
×(s×,a×)(s

′
×)=P⋆

z(s,a)(s
′)·T ⋆(z,b)(z′)= (21)[∫

Rn

1Xi

(
Az(k)x(k)+Bz(k)F (x(k),z(k),k)+qz(k)+ξ

)
Pwz(k)

(dξ)

]
·T ⋆(z,b)(z′)

where P⋆
z is the true transition probability function for mode z, T ⋆ is the true mode

switch probability function, 1Xi
(·) is the indicator function (which returns value

1 if, and only if, its argument belongs to the set Xi), and Xi is the element of the
partition associated with s′× (and hence also the element of the partition associated
with s′). Importantly, this relation implies that any PCTL formula satisfiable for
the MDP is also satisfiable for the dynamical system [28]. More formally, for this
product MDPMP⋆

× with transition function P⋆
×, it holds that

(MP⋆
× |=πΦ) =⇒ (J |=F Φ). (22)

Finally, combining (20) and (22), we arrive at the desired expression, namely

PNV {(M×
I |=πΦ) =⇒ (J |=F Φ)}≥1−β′. (23)

Thus, the generated abstraction is a β′-iMDP.

Appendix 1.2 Proof of Theorem 3

Consider the robust iMDPM∀z
I =(S,A∀z,sI ,P∀z) obtained via the procedure out-

lined in Sect. 4.3. Sincewe define the backward reachable set as the intersection of the
individual backward reachable sets, then a partition Xi⊆G−1(d)⊆R−1

z (d),∀z∈Z
and for all target points d.

On the concrete model at every time step, we can measure the current mode,
thus we can calculate the control input to drive our noiseless successor state to
d as u=B+

z (d−Azx−qz), with B+
z representing the pseudoinverse of B (as also

described in Sect. 5.2). By the definition of the backward reachable set, this control
input will be a valid control input such that u∈U , regardless of the mode.

We choose each transition probability interval as the smallest interval contain-
ing all individual mode probability intervals, so Pz(s,a)(s

′)⊆P∀z(s,a)(s
′),∀z∈Z.

Each individual interval is generated with the scenario approach. Thus, for the
true transition probability P⋆

z(s,a)(s
′), we have for all z∈Z that

PV {P⋆
z(s,a)(s

′)∈Pz(s,a)(s
′), ∀s∈S}≥1− β

|S|·|A|
. (24)
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It follows that, since state s is contained in the backward reachable set of d in
mode z, and Pz(s,a)(s

′)⊆P∀z(s,a)(s
′) then PV {P⋆

z(s,a)(s
′)∈P∀z(s,a)(s

′),∀s∈
S}≥1− β

|S|·|A| . Since we wish to be robust to all possible modes, we have that

PNV {P⋆
z(s,a)(s

′)∈P∀z(s,a)(s
′), ∀s∈S,∀z∈Z}≥1− β ·|Z|

|S|·|A|
. (25)

Lastly, by observing that the iMDP has at most |S|·|A| unique probability intervals,
we can again use Boole’s inequality to show that with probability at least 1−β′,
all probabilities are contained within their intervals

PNV
{
P⋆
z(s,a)(s

′)∈P∀z(s,a)(s
′),∀s,s′∈S,a∈A,z∈Z

}
≥1− β ·|S|·|A|·|Z|

|S|·|A|
=1−β′.

(26)

As noted above, on the concrete system, we are always able to calculate a valid
control input. Thus, for any possible evolution of the mode iMDP and at every time
step, we can calculate a valid control input, and we know that with a confidence
of 1−β′, the probability of transitioning to s′ is in the interval P∀z(s,a)(s

′), again
regardless of which mode we do uncover. We can thus conclude, for any possible
mode-switching MDP, our resulting abstraction will properly contain the true
transition kernel of the continuous system.

We again consider the concepts of probabilistic feedback refinements [28]. Our
mapping now maps the continuous part x of the hybrid state in the MJLS to a
single state s, regardless of mode z; thus we consider a pair of states (x,s). For all
such pairs of states, and for every mode, we then have

∀a∈A,s′∈S,z∈Z :

P⋆
z(s,a)(s

′)=

∫
Rn

1Xi
(Azx(k)+BzF (x(k),z,k)+qz+ξ)Pwz

(dξ),
(27)

where Xi is the element of the partition associated with s′.
Consider now an iMDPMP⋆

∀z

I , with intervals

P⋆
∀z(s,a)(s

′)=[min
z∈Z

P⋆
z(s,a)(s

′),max
z∈Z

P⋆
z(s,a)(s

′)],

such that P⋆
z(s,a)(s

′)∈P⋆
∀z(s,a)(s

′),∀z∈Z, states and actions are identical to those
forM∀z

I . Since this true robust iMDP contains the true transition probabilities P⋆
z

of every mode, then satisfaction of a formula on this iMDP must imply satisfaction
of the formula on any concrete model with the known mode dynamics, but any
mode-switching MDP, so that

(MP⋆
∀z

I |=πΦ) =⇒ (J |=F Φ).

Then, this iMDP is contained within our generated iMDP with a confidence 1−β′

PNV
{
MP⋆

∀z

I ∈M∀z
I

}
≥1−β′,
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so that we can finally conclude

PNV {(M∀z
I |=πΦ) =⇒ (J |=F Φ)}≥1−β′. (28)

Thus, the generated abstraction is a β′-iMDP.

Appendix 2 Experiment Details and Additional Results

In this appendix, we first provide the explicit model formulation for the UAV
experiments. Thereafter, we present additional results for the temperature control
benchmark in particular.

Appendix 2.1 UAV motion planning

For the UAV motion planning problem, we considered a 6-dimensional state vector
defined as x=(px,py,pz,vx,vy,vz)

⊤∈R6, with pi and vi denoting the position and
velocity in direction i. The dynamics follow a double integrator model, so that the
resulting state equations are:

x(k+1)=


1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

x(k)+


T 2

2 0 0

0 T 2

2 0

0 0 T 2

2
T 0 0
0 T 0
0 0 T


u(k)+w(k), (29)

where w(k) is the noise term arising from turbulence, T is the discretization con-
stant, and u(k)∈R3 is the acceleration, and control input, which is constrained
to the interval [−4,4].

Since the model in (29) is not fully actuated (it has only 3 control inputs, with
a state space of 6 dimensions) we group every two time steps together to rewrite
the model as

x(k+2)=Āx(k)+B̄

[
u(k)

u(k+1)

]
+

[
Aw(k)
w(k+1)

]
. (30)

With Ā=A2 and B̄ =
[
AB B

]
. Then, the two control inputs are placed into a

single vector, which now has dimension 6.
In this setup, the only difference between the two modes is the distribution

of the noise w(k): in the low wind speed mode, this is distributed according to
a zero-mean Gaussian with standard deviation of 0.15. In the high wind speed
mode, the standard deviation is instead 1.5. The jumps between these modes are
modelled with a precisely known MDP, with a 10% chance of switching from low
to high wind speed, and then a 30% chance of switching from high to low.

The objective, is to reach the goal region (highlighted in green in Fig. 3), whilst
avoiding critical regions (highlighted in red in Fig. 3), within 64 time steps (or 32
time steps with the amended model).
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Appendix 2.2 Additional Outcomes for Temperature Control

Initial mode affects obtained controllers In Figs. 7 and 8, we present the
results for the building temperature control problem, if the initial MJLS mode
is either 1 or 2. From Fig. 7, we observe that the initial mode indeed affects the
probability of reaching the satisfying the PCTL property. The clearest evidence
for this is when initial temperatures are low in both rooms. The disparity arises
from the fact that we have less control over the other room, so when starting in
mode 1, we are more likely to fail to meet the specification if mode 2 has a close to
critical temperature, and vice versa for starting in mode 2. This demonstrates that
finding the true initial mode is important for the generated guarantees, analysing
the results for an incorrect initial mode will lead to incorrect conclusions.

Modelling Switching actions leads to better controllers Thus far, we have
considered MJLSs with switching actions, e.g., for the temperature regulation
problem, we could control moving the fan heater and radiator. To show that these
switching actions improve the quality of the obtained policies (and thus controllers),
we perform a variant of the experiment in which we fix the policy of the mode
switching MDP a-priori. As in the original experiment, we are interested in reaching
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Fig. 7. Lower bound probabilities on reaching the goal temperature, as in Fig. 4, but now
for both initial modes for the MJLS (left: initial mode 1; right: initial mode 2).

20 21 22 23 24 25
Room 1 Temp (°C)

20

21

22

23

24

25

R
oo

m
 2

 T
em

p 
(°

C
)

20 21 22 23 24 25
Room 1 Temp (°C)
20

21

22

23

24

25

R
oo

m
 2

 T
em

p 
(°

C
)

More Complex Formula

Fig. 8. Initial states that satisfy the PCTL formula in (17) (shown in white), presented
for both initial modes of the MJLS (left: initial mode 1; right: initial mode 2).
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Fig. 9. Results for a temperature control problem, with mode transitions that are driven
by an MC, with probabilities known to be in the interval 40-60%.

a goal region defined as a temperature of between 22 and 23◦C in both rooms, whilst
avoiding critical temperatures below 20◦C, or above 25◦C. In the new result, we
model our system under Assumption A, but consider mode transitions to happen
at random without any control, but with knowledge that all mode transitions are
in the interval [0.4,0.6]. By doing so, the Markov jump process that we use to
construct our abstraction is in fact a Markov chain.

The results for this experiment with an a-priori fixed Markov jump policy are
shown in Fig. 9. Compared to Fig. 7, we observe that not modelling the mode
switching actions in the product iMDP leads to an optimal policy with worse
satisfaction probabilities, which in turn leads to a feedback controller with worse
guarantees. In other words, modelling the mode switching actions in the product
iMDP and synthesising an optimal policy jointly with the individual-mode actions
leads to feedback controllers with better guarantees.
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